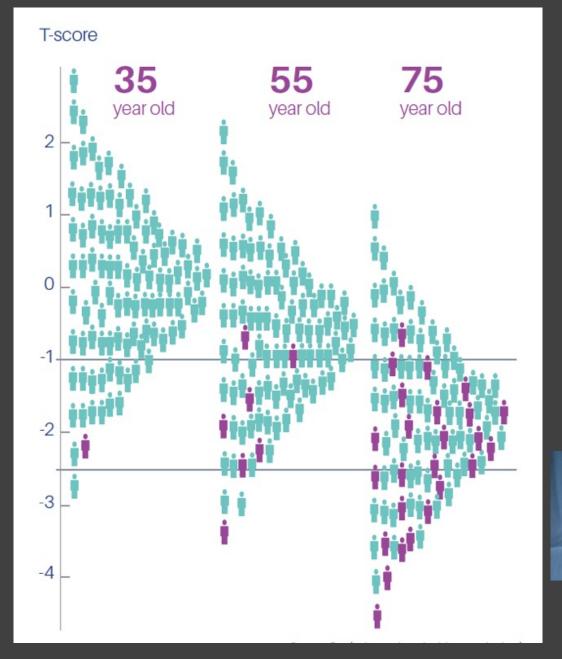
Bone Health: New Developments

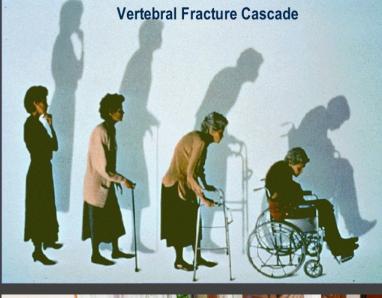
Nick Birch Consultant Spinal Specialist

Osteoscan UK Ltd www.osteoscanuk.com

Diagnostics:The Osteopenia Fracture ConundrumTherapeutics:Reversing Bone Loss, Curing OsteoporosisDietetics:Meat-free diet and Bone HealthExercise:Vibration Therapy and Bone health

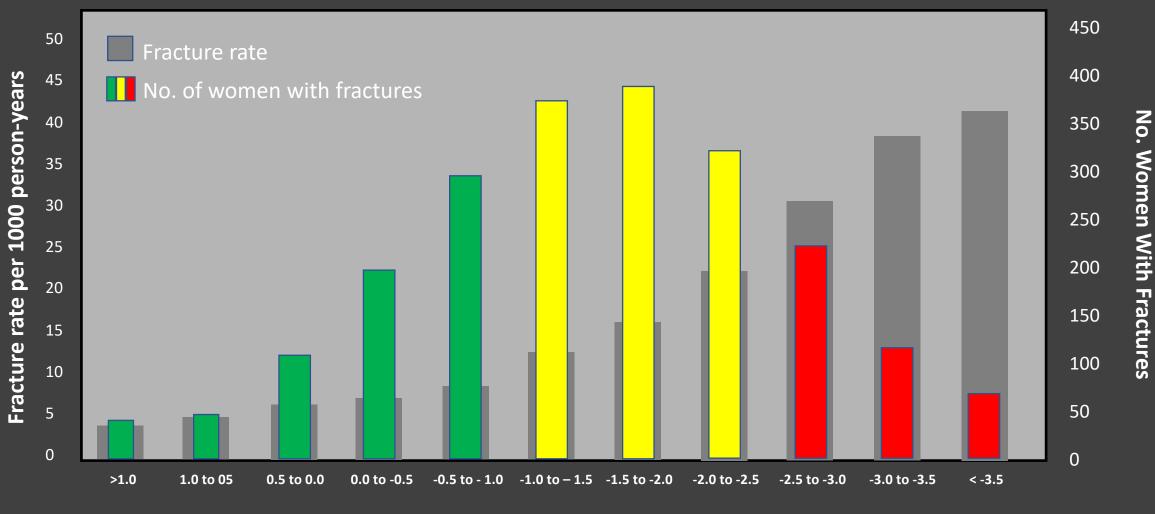
Diagnostics:

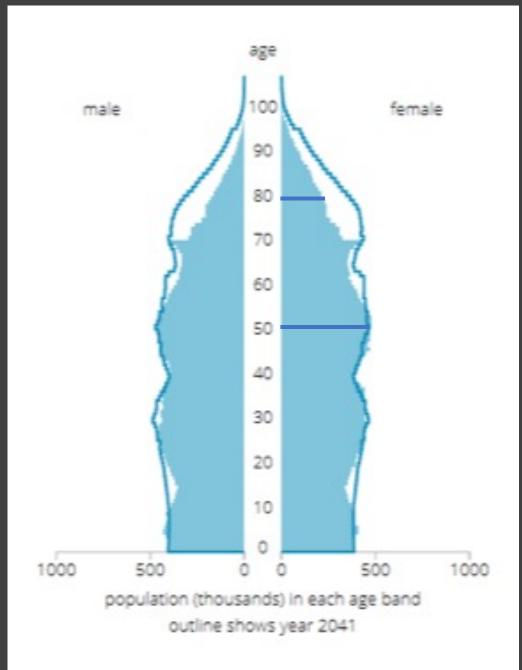

The Osteopenia Fracture Conundrum


Risk of Fragility Fractures in Women According to Age

Age 35: 1 in 100

Age 55: 7 in 100

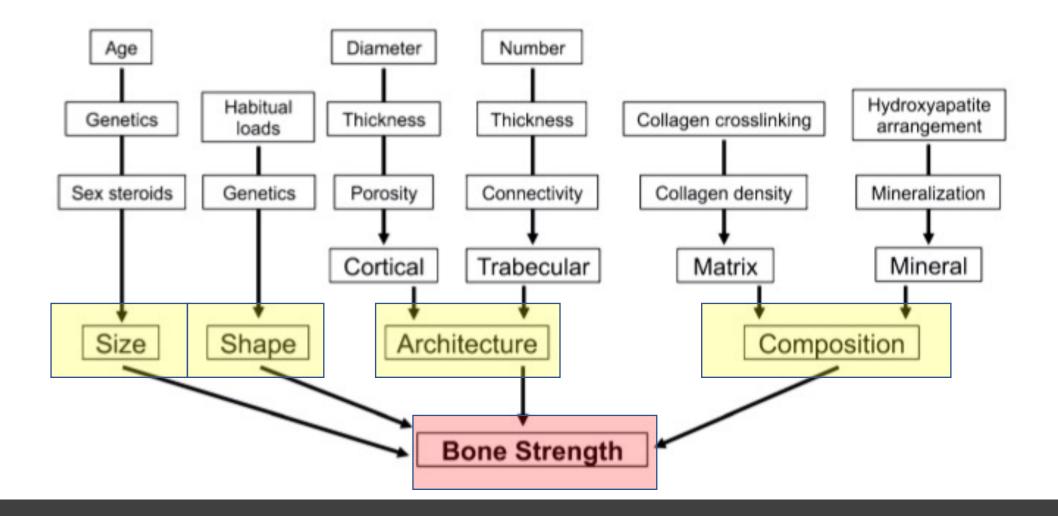

Age 75: 24 in 100



Rate and Number of Fractures in Women According to Bone Mineral Density

Bone Mineral Density: T Scores

Population Distribution by Age

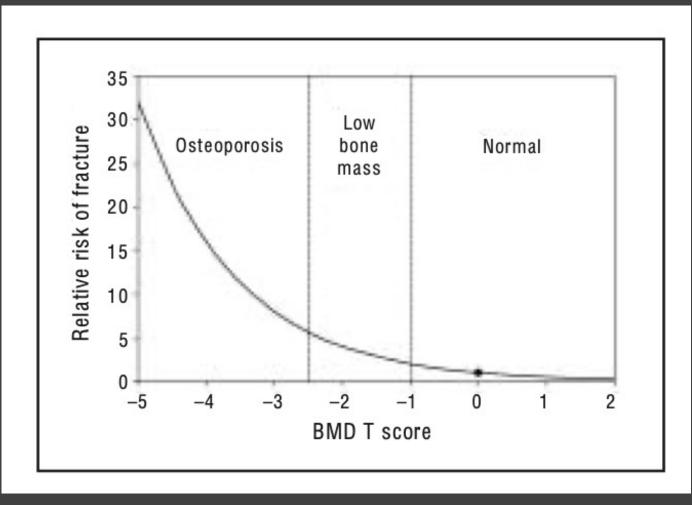

The ability of bone to resist fracture is the best indicator of bone quality

Potentially related to several bone properties:

Mineralisation Bone mineral density (BMD) Bone turnover rate Microarchitecture Geometry

SOLOMON EPSTEIN, MD Mayo Clinic Proceedings 2005; 80 (3):379-388

Factors Contributing to Bone Health

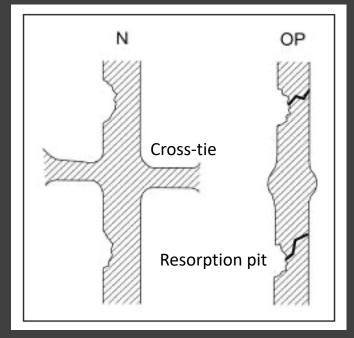


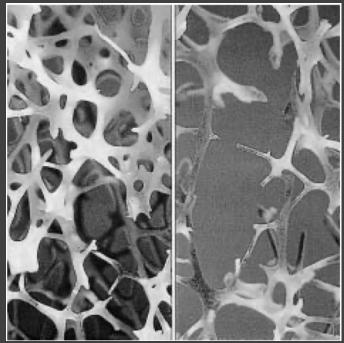
BMD remains the standard for evaluating fracture risk and is easily measured in vivo (DEXA / REMS)

BMD is influenced by both bone mineral content and bone geometry (micro- and macroarchitecture) of the site measured

An approximately exponential relationship exists between bone density and some measures of bone strength

Modest increases in bone density are associated with disproportionately large increases in bone strength


High rate of bone turnover e.g. post menopause increases the number of resorption pits


Resorption pits act as focal areas of weakness and reduce bone strength increasing the risk of micro-fractures and macro-fractures

Excessive resorption can lead to complete trabecular perforation and permanent loss of connectivity

With advancing age, there is a preferential loss of horizontal trabeculae (cross-ties)

Such architectural disruption substantially decreases the load needed before buckling occurs

Plain x-ray

Limited ability to understand internal bone architecture on standard imaging

Bone health assessment when T score is -1.0 to - 2.5

BMD + Trabecular Bone Score / Fragility Score = quality of bone or "toughness"

Light-weight carbon fibre lattice Well-built and incredibly strong

Tacoma Narrows suspension bridge Massive but structurally flawed and failed catastrophically

DEXA Output: "The Gold Standard"

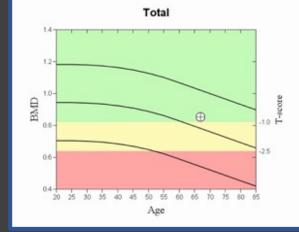
T-SCORE

Z-SCORE

BMD (g/cm²)

+/- FRAX

+/- TBS


DXA Results Summary:

Region	sBMD	T -	Z -
Total	(mg/cm ²)	score	score
Total	1150	-0.1	1.5

Total BMD CV 1.0% WHO Classification: Normal Fracture Risk: Not Increased

Image not for diagnostic use 109 x 98 NECK: 49 x 15 HAL: 115 mm

DXA Results Summary:

Region Total	sBMD (mg/cm ²)	T - score	Z - score	
Total	1150	-0.1	1.5	

Total BMD CV 1.0% WHO Classification: Normal Fracture Risk: Not Increased

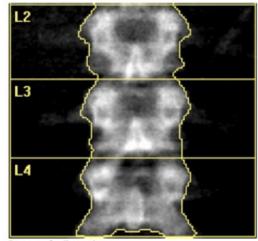
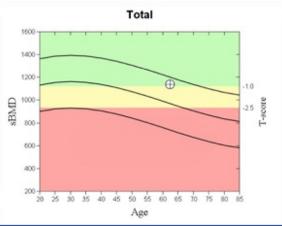



Image not for diagnostic use 116 x 149 DAP: 1.6 cGy*cm²

Low lumbar spine TBS is associated with a history of fracture and the incidence of new fractures

The effect is largely independent of BMD

The TBS effect is independent of FRAX, with likely greatest utility for those individuals whose BMD levels lie close to an intervention threshold

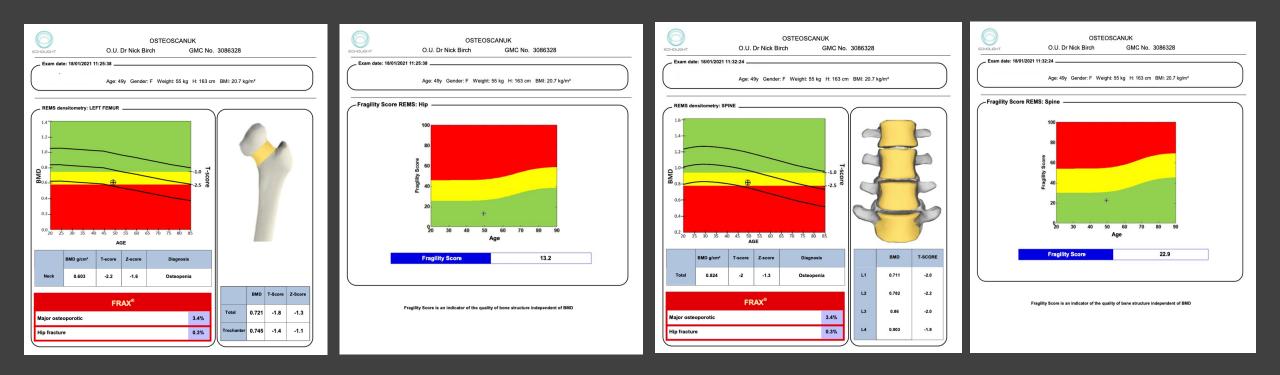
The clinical and scientific evidence supporting the use of TBS, makes TBS an attractive and useful clinical tool for physicians to improve patient management in osteoporosis

Take home message: TBS i.e. bone quality should be an everyday part of bone health assessment and is likely to be very important for those women with T scores between -2.0 and -3.0 as it can guide management

ORIGINAL PAPER doi: 10.5455/medarh.2018.72.46-50 MED ARCH. 2018 FEB; 72(1): 47-50 RECEIVED: OCT 10, 2017 ACCEPTED: JAN 05, 2018	The Trabecular Bone Score Predicts Spine Fragility Fractures in Postmenopausal Caucasian Women Without Osteoporosis Independently of Bone Mineral Density
¹ Struttura Semplice Osteoporosi e Malattie Metaboliche dello Scheleletro, Bologna, Italy	Claudio Ripamonti ¹ , ² , Lucia Lisi ² , Angela Buffa ³ Saverio Gnudi ⁴ , Renata Caudarella ⁵
² Struttura Semplice Dipartimentale Medicina e Reumatologia Istituto Ortopedico Rizzoli, Bologna, Italy	ABSTRACT

699 post menopausal women had spine BMD and TBS measured by DEXA

253 had osteoporosis446 not osteoporotic


62 sustained spine fragility fractures

BMD and TBS were almost equally good at predicting fragility fractures across the entire cohort

TBS but not BMD predicted fractures in the non-osteoporotic group

Take home message: DEXA derived BMD is only predictive of fractures if the T score is < -2.5 Otherwise the TBS is required to understand the propensity to fracture

REMS Output

BMI T-SCORE Z-SCORE BMD (g/cm²) FRAX[®] (> 40 years) FRAGILITY SCORE

Aging Clinical and Experimental Research https://doi.org/10.1007/s40520-019-01294-4

REVIEW

Radiofrequency echographic multi-spectrometry for the in-vivo assessment of bone strength: state of the art—outcomes of an expert consensus meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO)

Adolfo Diez-Perez¹ · Maria Luisa Brandi^{2,3} · Nasser Al-Daghri⁴ · Jaime C. Branco⁵ · Olivier Bruyère⁶ · Loredana Cavalli^{2,3} · Cyrus Cooper⁷ · Bernard Cortet⁸ · Bess Dawson-Hughes⁹ · Hans Peter Dimai¹⁰ · Stefano Gonnelli¹¹ · Peyman Hadji¹² · Philippe Halbout¹³ · Jean-Marc Kaufman¹⁴ · Andreas Kurth^{15,16} · Medea Locquet¹⁷ · Stefania Maggi¹⁸ · Radmila Matijevic^{19,20} · Jean-Yves Reginster^{4,6} · René Rizzoli²¹ · Thomas Thierry^{22,23}

Received: 17 June 2019 / Accepted: 24 July 2019 © The Author(s) 2019

REMS represents the first clinically available method for direct non-ionizing measurement of lumbar and femoral BMD

REMS-estimated BMD is an accurate diagnostic parameter, predicting incident clinical fracture risk in a representative sample of female subjects

REMS has shown a further potential in the assessment of skeletal fragility based on bone structure quality through the Fragility Score parameter, which is independent from the densitometric evaluation

Take home message: REMS is equivalent to DEXA for BMD and TBS assessment

T-Score Discordance

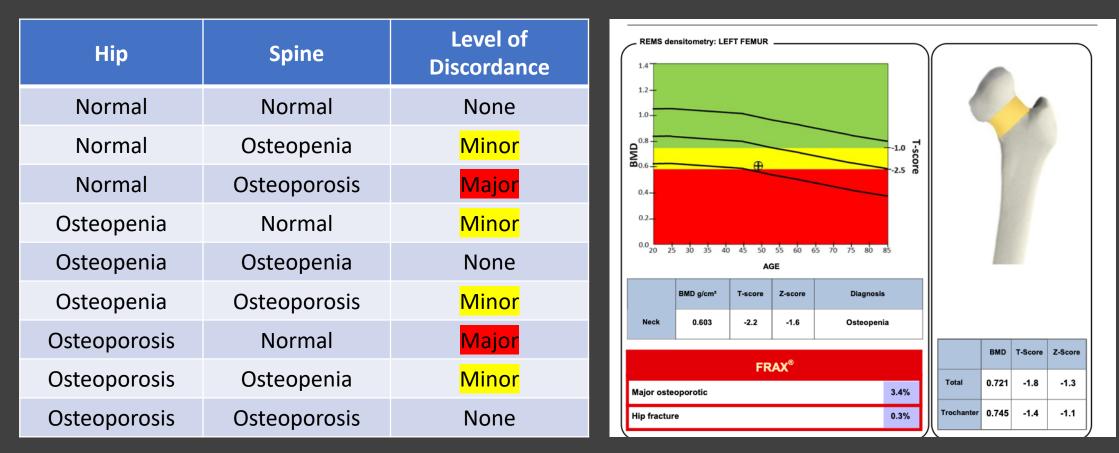
Concordance (/kənˈkɔːd(ə)ns/) Noun agreement or consistency.

"the concordance between the teams' research results"

Discordance (/dɪˈskɔːd(ə)ns)/ Noun lack of agreement or consistency.

"the discordance between sales and forecasts should be a focus"

Osteoporosis (WHO definition)

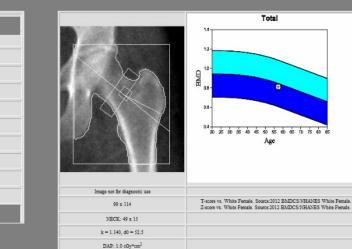

A *systemic* condition characterised by low bone mineral density (BMD) in the osteoporosis range measured by bone densitometry (T score < - 2.5)

In premenopausal women BMD at the hip and spine should be of the same order of magnitude

In postmenopausal women there can be more variation

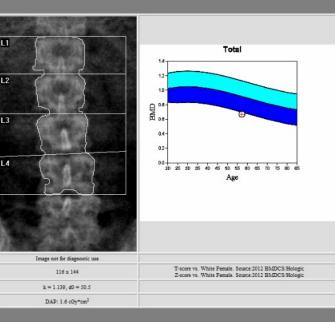
There may be a specific reason for a large difference (e.g. paralysis)

Levels of Discordance



If T-scores at the hip and in the spine put a woman's bone density into the same WHO diagnostic category, large differences between T-scores e.g. -2.5 at the hip and -4.7 in the spine need to be explained if there is no clear clinical reason why such a difference exists

DEXA Discordant Results


Patient Information:

Name:	·
Patient ID:	1160660
Identifier 2:	
Postal Code:	
Sex:	Female
Ethnicity:	White
Height:	165.6 cm
Weight:	67.4 kg
DOB:	10.07.1961
Age:	57
Menopause Age:	
Referring Physician:	

Patient Information:

Name:	
Patient ID:	1160660
Identifier 2:	
Postal Code:	
Sex:	Female
Ethnicity:	White
Height:	165.6 cm
Weight:	67.4 kg
DOB:	10.07.1961
Age:	57
Menopause Age:	
Referring Physician:	

Scan Information:

Scan Date:	16 November 2018 - A11161811	Results S	ummary:					
Scan Type:	x Left Hip						-	
Analysis Date:	16.11.2018 15:26	Region	Area[cm ²]	BMC[(g)]	BMD[g/cm ²]	T-score	PR (Peak Reference)	1
Analysis Protocol:	Hip	Neck	4.88			-1.9		
Report Date:	16.11.2018 15:31	Total Total BMI	36.73	29.73 ACF = 1.038	0.809 BCF = 0.999.	-1.1 TH = 6.30	86	i
Institution:								
Operator:	GH							

FRAX® WHO Fracture Risk Assessment Tool	
10-year Fracture Risk ¹	
Major Osteoporotic Fracture	12
Hip Fracture	2.1

Reported Risk Factors: UK, Neck BMD=0.634, BMI=24.6, previous fracture

¹ FRAX® Version 3.08. Fracture probability calculated for an untreated patient. Fracture probability may be lower if the patient has received treatment.

Region	Area[cm ²]	BMC[(g)]	BMD[g/cm ²]	T-score	PR (Peak Reference)	Z-score	AM (Age Matched)
Neck	4.88	3.09	0.634	-1.9	75	-0.8	88
Total	36.73	29.73	0.809	-1.1	86	-0.3	96

%

Scan Date:	16 November 2018 - A11161810
Scan Type:	x Lumbar Spine
Analysis Date:	16.11.2018 15:23
Analysis Protocol:	Spine
Report Date:	16.11.2018 15:31
Institution:	1
Operator:	GH

Horizon W (S/N300212M)

13.6.0.5

Scan Information:

Results Summary:

Region	Area[cm ²]	BMC[(g)]	BMD[g/cm ²]	T-score	PR (Peak Reference)	Z-score	AM (Age Matched)
L1	14.60	9.90	0.678	-2.8	68	-1.8	78
L2	14.70	9.88	0.672	-3.2	65	-2.0	75
L3	15.64	10.65	0.681	-3.7	63	-2.4	72
L4	16.35	10.55	0.645	-3.8	61	-2.5	70
Total	61.29	40.97	0.669	-3.4	64	-2.2	73

Comment:

Model:

Comment:

Software

version:

HOLOGIC

Comment:

Model:

Comment:

Software

version:

consideration of individual patient factors, including patient consideration of mdr/dual patient factors, including patient preferences, comorbidities, previous drug use and risk factors not captured in the FRAX model (e.g. frailty, falls, vitamin D deficiency, increased bone turnover, interval significant decline in BMD).

13.6.0.5

Horizon W (S/N300212M)

Results Summary:

Region	Area[cm ²]	BMC[(g)]	BMD[g/cm ²]	T-score	PR (Peak Reference)	Z-score	AM (Age Matched)
Neck	4.88	3.09	0.634	-1.9	75	-0.8	88
Total	36.73	29.73	0.809	-1.1	86	-0.3	96

Results Summary:

Region	Area[cm ²]	BMC[(g)]	BMD[g/cm ²]	T-score	PR (Peak Reference)	Z-score	AM (Age Matched)
L1	14.60	9.90	0.678	-2.8	68	-1.8	78
L2	14.70	9.88	0.672	-3.2	65	-2.0	75
L3	15.64	10.65	0.681	-3.7	63	-2.4	72
L4	16.35	10.55	0.645	-3.8	61	-2.5	70
Total	61.29	40.97	0.669	-3.4	64	-2.2	73

Minor discordance according to WHO diagnostic category but significant discordance according to T score difference

Causes of Discordance

Physiological	The skeleton's adaptive reaction to mechanical strain (not test related)				
Pathophysiological	A disease state affecting the skeleton (not test related)				
Anatomical	Differences between sites in content of cortical and trabecular bone and/or rate of bone loss (e.g. spinal degeneration)				
Artefactual	The presence of man-made items within the region of interest of the test (spinal implants)				
Technical	Faulty device hardware or software or the technologist's method of acquiring or analysing the test (machine failure, post-processing errors) Prevalence and type of errors in dual energy x-ray absorptiometry (DEXA) European Radiology; May 2015, Volume 25, Issue 5, pp 1504–1511 Messina et al. 2476 patients having DEXA; More than 90 % of DXA presented at least one error, mainly of data analysis; International Society for Clinical Densitometry guidelines are very poorly followed				

Rates of Discordance with DEXA

Author	Year	Patient numbers	Minor	Major	
El Maghraoui	2007	3015	41.5%	4.3%	
Woodson	2000	5627	44%	5%	
Moayyeri	2006	4188	38.9%	2.7%	
Mounach	2009	3479	42%	4%	
Derakshan	2012	3039	40.0%	1.8%	
Younes	2014	1780	45.7%	4.8%	
Ayaz	2017	944	42.4%	2.5%	
		Mean	42.1%	3.6%	

Rates of Discordance with REMS OsteoscanUK 2018 – 2021 data

	Female	Male	All			
Patients	523	86	609		DEXA	REMS
Total Minor Discordance (WHO diagnostic category)	64 (12.1%)	2 (2.3%)	66 (10.8%)			
Total Major Discordance (WHO diagnostic category)	0	0	0	Major	3.6%	0%
Femur Osteopenia / Spine OP	18 (3.4%)	0	18 (3.0%)	Minor	42.1%	10.8%
Femur OP / Spine Osteopenia	19 (3.6%)	0	19 (3.1%)			
Femur normal / Spine Osteopenia	19 (3.6%)	0	19 (3.1%)	Total	45.7%	10.8%
Femur Osteopenia / Spine Normal	8 (1.5%)	2 (2.3%)	10 (1.6%)			

Recommendation

If a woman has a DEXA scan showing a major discordance, or a T-score discrepancy between hip and spine of more than 1.5 and she has no obvious reasons for such a result, she should query the DEXA result

If a reasonable answer is not forthcoming, asking for a second opinion with a bone density scan performed either on a different DEXA machine or with alternative technology e.g. REMS, is entirely reasonable and appropriate

Therapeutics:

Reversing Bone Loss, Curing Osteoporosis

Therapeutic Options for Treating Osteoporosis

Antiresorptive agents:

Bisphosphonates (Alendronate, Zoledronate, Pamidronate, Ibandronate) RANK Ligand antibody (Denosumab) Strontium Ranelate Calcitonin Oestrogen Raloxifene (post-menopausal oestrogen mimic)

Anabolic agents:

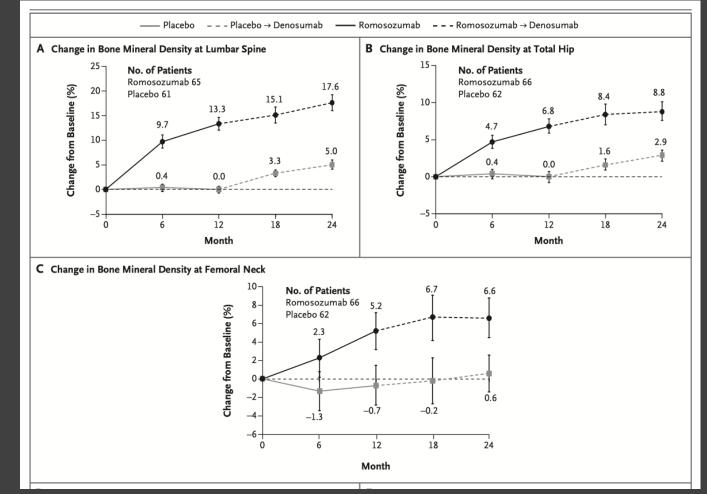
Parathyroid hormone analogues (Teriparatide, Abaloparatide) Sclerostin inhibitors (Romosozumab) Antiresorptive therapy reduces bone turnover rate and ratio of resorption to formation, leading to:

Increased BMD and mean mineralization density

Preserved microarchitecture (connectivity, trabecular number and thickness, cortical porosity) at best but antiresorptive agents do not restore microstructural deterioration existing at the time of starting treatment

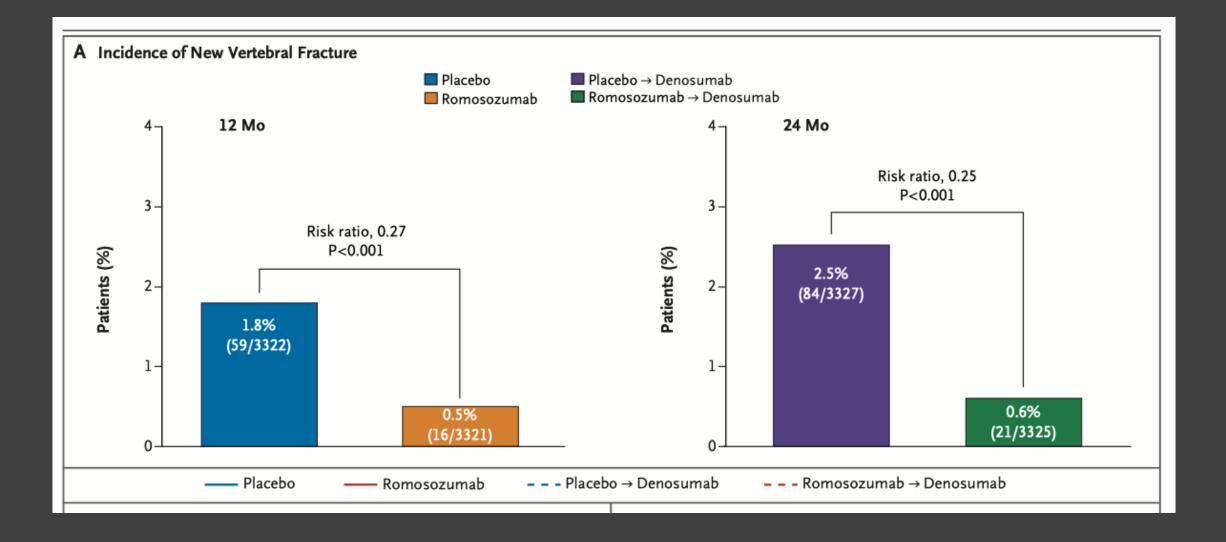
These effects lead to increased bone strength and quality compared to age matched controls not on treatment and as a result decreased fracture risk

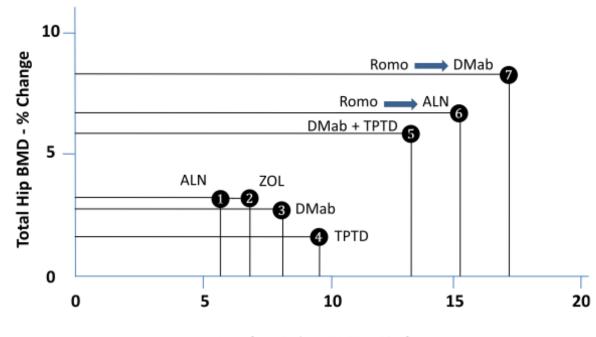
But....unknown or uncertain roles of antiresorptive therapy on microcracks and overall bone geometry


Sclerostin

Sclerostin: a protein produced almost exclusively from osteocytes inhibiting bone formation by both osteoblasts and osteocytes

Romosozumab, a monoclonal antibody that binds sclerostin, increases bone formation and decreases bone resorption


One year of romosozumab treatment in postmenopausal women with osteoporosis resulted in a lower risk of vertebral and clinical fractures than the risk with placebo


Substantial gains in bone mineral density at the spine and hip with romosozumab provided a foundation for an ongoing reduction in the risk of fracture during sequential treatment with denosumab.

Romosozumab Treatment in Postmenopausal Women with Osteoporosis

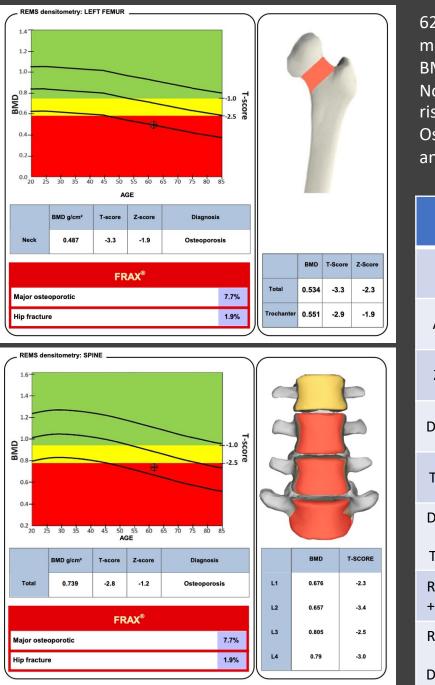

Cosman et al. N Engl J Med 2016;375:1532-43.

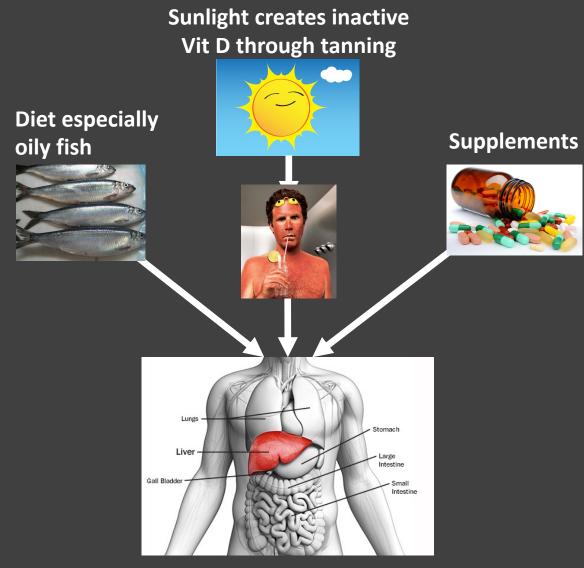
Fig. 1. Percent changes from baseline at 24 months (M) in bone mineral density (BMD) of the lumbar spine and total hip in postmenopausal women with osteoporosis with various treatment regimens. *1*, alendronate (ALN) [16]; *2*, zoledronic acid (ZOL) [24]; *3*, denosumab (DMab) [25]; *4*, teriparatide (TPTD) [25]; *5*, denosumab plus teriparatide [25]; 6, romosozumab 12 M and alendronate 12 M [16]; 7, romosozumab 12 M and denosumab 12 M [15].

62-year-old postmenopausal woman BMI 19 kg/m² No additional clinical risk factors Osteoporosis hip and spine

	T score after treatment		
Rx	Нір	Spine	
ALN	-3.2	-2.6	
ZOL	-3.2	-2.6	
DMab	-3.2	-2.6	
TPTD	-3.2	-2.5	
Dmab + TPTD	-3.1	<mark>-2.4</mark>	
Romo + ALN	-3.1	<mark>-2.4</mark>	
Romo + DMab	-3.0	<mark>-2.3</mark>	

Dietetics:

Meat-free diet and Bone Health


High Content Calcium Foods (and supplements)

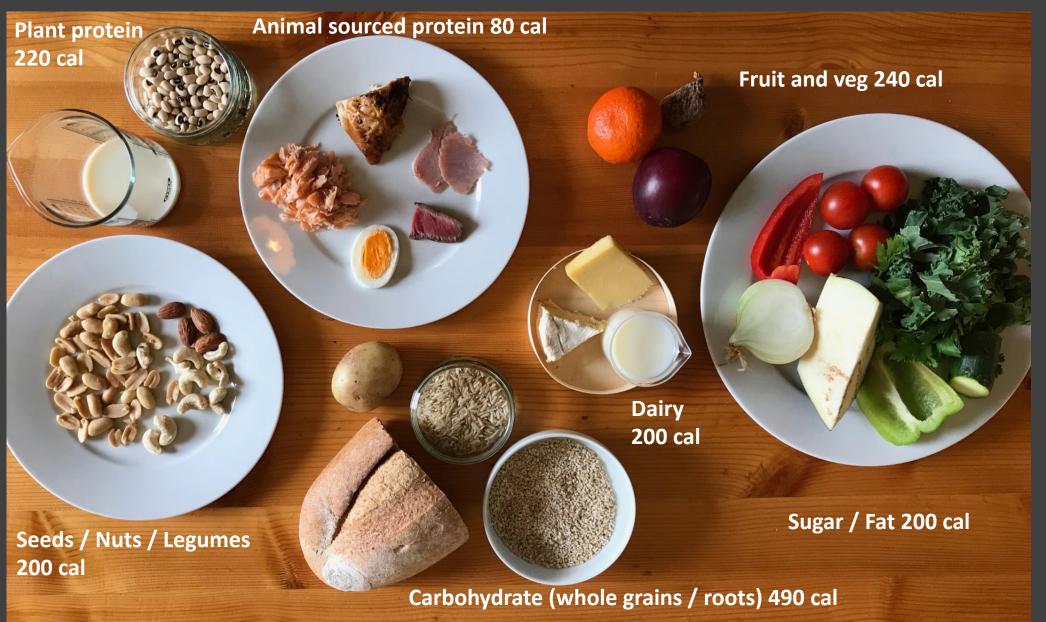
Dairy products

Salmon Whole grain Soy products Dried figs Sesame seeds Nuts Pitta Celery Spinach Greens Broccoli

Vitamin D activated in the liver

Calcium and Vitamin D calculator

Breakfast: Yoghurt Fruit / muesli 250 mg Ca²⁺ < 1 μg D3


Lunch: Sardines in pitta 300 mg Ca²⁺ 2 μg D3

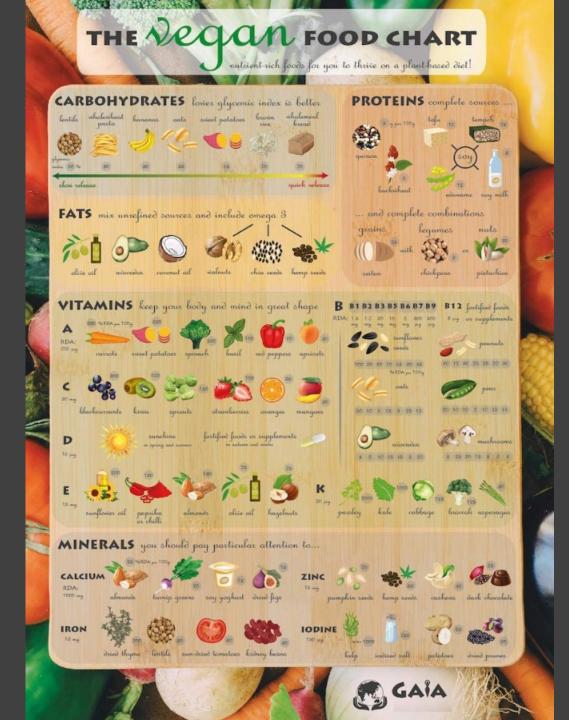
Dinner: Spaghetti bolognaise with parmesan cheese broccoli 400 mg Ca²⁺ < 1 μg D3

CALCIUM RICH FOOD CHOOSER – choose calcium rich foods as part of well balanced healthy eating			VITAMIN D RICH FOOD CHOOSER - choose vitamin D rich foods to add to vitamin D from sensible sunlight exposure			
Foods providing around 300 mg of calcium per average portion		Foods providing around 50 mg of calcium		Foods providing around 20 micrograms of vitamin D per average portion		 Limit processed
Edam / Gouda	1 portion (40g)	per average portion		Grilled herring *	1 portion (119g)	meat Limitoily
Paneer cheese	1 portion (60g)	Plain yoghurt	1 tablespoon (40g)			fish to 4 portions a
Parmesan cheese	1 portion (30g)	Fortified fromage frais	1 'mini' pot (47g)	Foods providing around 12-13 micrograms of v	itamin D per average portion	week (2 if you are
Cheese omelette Quiche (cheese and egg)	1 portion (120g) 1 portion (140g)	Muesli Swiss style	1 portion (50g)	Pink salmon, canned in brine & drained *	1 small can (100g)	pregnant or trying
Macaroni cheese	1 portion (140g)	Bread (white)	1 medium slice (36g)	Grilled salmon ·	1 portion (170g)	to conceive)
Foods providing around 200 mg of calcium	1			Grilled kipper fillet •	1 portion (130g)	 Limit liver products
· · · ·	rper average portion	Bread (wholemeal)	1 thick slice (44g)	Grilled rainbow trout fillet *	1 portion (165g)	to 1 portion a week
Milk or milk drink e.g. hot chocolate (skimmed/ semi-skimmed/whole)	1 tumbler or mug (200ml)	Green or French beans	1 portion (90g)			if you are over 50
Sova milk (calcium boosted)	1 tumbler or mug (200m)	Green cabbage	1 portion (95g)	Smoked mackerel *	1 portion (150g)	and avoid if you
Cheddar cheese & low-fat hard cheese	Small matchbox size (30g)	White cabbage (raw)	1 portion (90g)	Foods providing around 3-4 micrograms of vita	min D per average portion	pregnant
Yoghurt (low-fat fruit, plain & calcium boosted soya)	1 pot (125g)	Broccoll (steamed)	1 large portions (110g)	Some malted hot drinks (check labelling)	1 mug (25g)	Obselutes
Porridge (made with semi-skimmed milk)	1 bowl (160g - weight with milk)	Watercress	1 small bag (40g)	· • •	• •	 Check the food labels or
Halloumi	2 thin slices (35g)			Crab, cooked *	1 small can (75g)	packaging for
Cauliflower cheese	1 portion (200g)	Fried onion	1 medium sized (150g)	Tinned sardines in tomato sauce *	1 small can (100g)	more information -
Lasagne (meal for one, vegetable or meat) Pizza 12" (cheese & tomato, vegetarian or meat topping)	1 portion (290g) ¼ of the whole	Tinned tomatoes	1 tin (400g)	Scrambled eggs / plain omelette	2 eggs (120g)	the range fortified
Tofu (steamed or fried)	1 portion (120g)	Red kidney beans	2 tablespoons (70g)	Feedersteiter ereinel 4. Omiere mense of die		with vitamin D is
Sardines (canned)	1 portion (50g)	Vegetable casserole	1 portion (260g)	Foods providing around 1-2 micrograms of vita	min D per average portion	increasing. Some
Rice pudding	1 portion (200g)	Veggle burger	1 (56g)	Build-up powdered sachet (shake)	1 sachet (38g)	yoghurtand
Foods providing around 100 mg of calcium	per average portion	Vegetable samosa	1 (75g)	Soya milk (fortified)	1 glass (200ml)	bread products
		vegetable samosa		Bolled chicken's egg	1 egg without shell (50g)	are enriched although there
Cottage cheese Camembert	2 tablespoons (80g) 1 portion (40g = 1/6th of whole)	Pasta (dried, boiled)	1 portion (230g cooked weight)	Cornflakes (fortified)/bran flakes (fortified)	1 portion (30g)	is no consistent
White pitta bread	1 small (75g)	Disc the second based and	0.1			evidence that
Plain naan bread	1/3 (43g)	Rice (basmati, boiled)	10 heaped tablespoons	Foods providing around 0.5 micrograms vita	min D per average portion	specially enriched
Baked beans	1 small tin (200g)	Dairy or non-dairy	1 scoop (60g)	Pork chop, grilled	1 chop excluding bone (75g)	yeast is absorbed
Cornish pasty	1 medium size (155g)	Ice cream		Corned beef	1 thick slice (50g)	by the body.
Sausages (pork or vegetarian)	2 (80g)	Dried apricots	8 (64g)	Grilled bacon rashers	2 middle rashers (80g)	 Some foods
Tahini (sesame paste) Sesame seeds	1 heaped teaspoon (19g) 1 tablespoons (12g)	Orange / easy-peel citrus	1 large orange (50g) /	Low-fat spread, polyunsaturated (fortified)	1 teaspoon (5g)	such as wild
Tinned pink salmon	1 small tin (105g)	(e.g. tangerines, satsumas)	3 medium easy-peelers		1	mushrooms can
Grilled herring	1 (119g)		(210g)	Baking fat/margarine	1 teaspoon (5g)	be high in vitamin
Custard (ready made)	1 portion (120g)	Almonds	10 whole nuts (22g)	Pork sausages, grilled or fried *	1 sausage (40g)	D but this will vary
Dried figs	2 (40g)	Brazil nuts	9 whole nuts (30g)	Lamb's liver, fried •	1 portion (40g)	

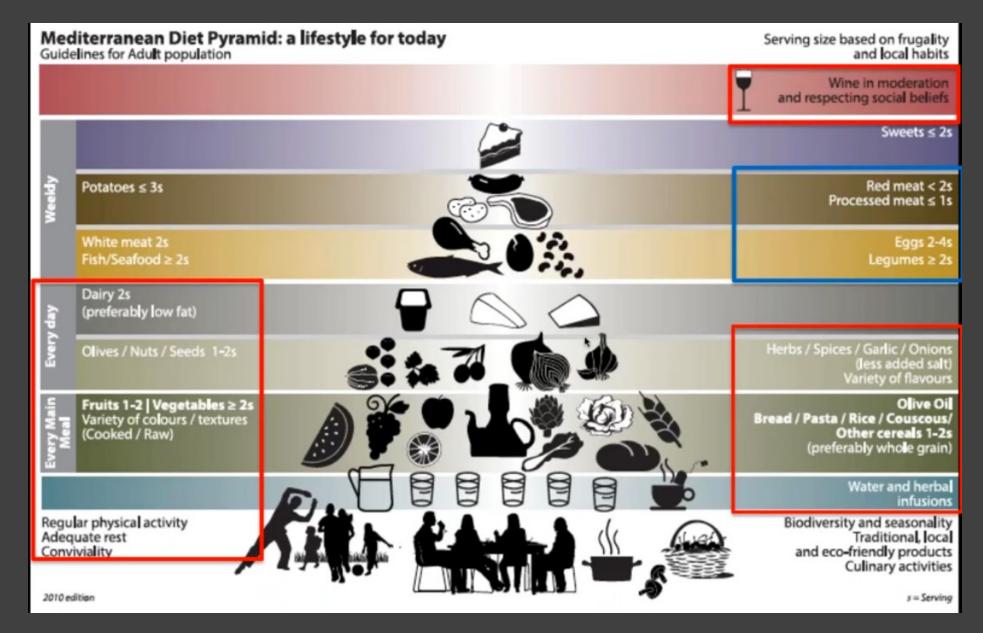
= 950 mg Ca²⁺ < 4 μg D3 (160 i.u.)

Flexitarian Diet

Total energy intake 1630 cal


Total Ca²⁺ 800 mg

Total Vit D < 2 μg (80 i.u)


Vegetarian Food Pyramid

Vegan Food Chart

Mediterranean Diet Pyramid

Veganism, vegetarianism, bone mineral density, and fracture risk: a systematic review and meta-analysis

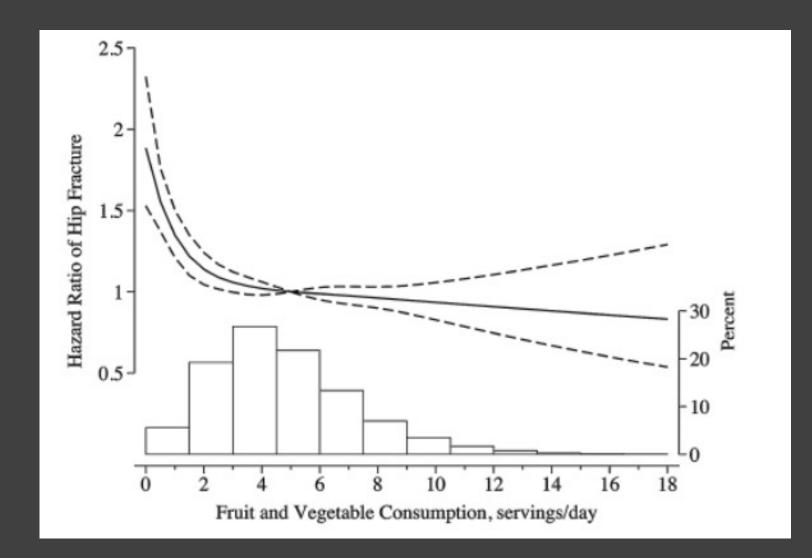
Isabel Iguacel et al. Nutrition Reviews 2018; Vol. 77(1):1–18

Vegetarian and vegan diets should be planned to avoid negative consequences on bone health

Differences in Bone Mineral Density between Adult Vegetarians and Non-vegetarians Become Marginal when Accounting for Differences in Anthropometric Factors

Nena Karavasiloglou et al. J Nutr 2020;00:1–6.

Lower BMD among adult vegetarians is in larger parts explained by lower BMI and waist circumference


Vegetarian and vegan diets and risks of total and site-specific fractures: results from the prospective EPIC-Oxford study

Tammy Y. N. Tong et al. BMC Medicine (2020) 18:353

Non-meat eaters, especially vegans, had higher risks of either all and some site-specific fractures, particularly hip fractures

Prospective study of dietary Non-Enzymatic Antioxidant Capacity on the risk of hip fracture in the elderly

Essi Hantikainen et al. Bone 90 (2016) 31–36

Take Home Messages

Diet is vital to bone health

Omnivores should consider moderation of animal protein intake and increase of plant-based foods to reduce secondary health risks

Vegetarians and vegans should analyse their dietary intake to ensure they have sufficient energy and nutrient intake to reach RDA

Everyone should engage in at least 30 min impact exercise daily to maintain bone density and toughness

Vibration Therapy and Bone Health

Year	First author	Study type:	Particpants	Number of participants / Arms	WBV schedule: Force Frequency Program	Study length	Change in bone health	
2004	Rubin	RCT	Postmenopausal women	70 / 2 WBV + Controls	0.2g / 30 Hz / 20 min daily	12 months	Relative improvement of hip BMD if highly compliant with treatment Relative Improvement of spine BMD especially in < 65 kg women	
2004	Verscheueren	RCT	Postmenopausal women	70 / 3 WBV + Exercise + Controls	2.3 g – 5.1 g / 35-40 Hz / 30 minutes x 3 / week	6 months	Hip BMD increased in WBV group; reduced in exercise and controls	
2011	Slatkovska	RCT	Postmenopausal women	202 / 2 WBV + Controls (Ca/Vit D supp)	0.3g / 30 Hz & 90 Hz / 20 minutes / day	12 months	No benefit	No benefit
2011	Wysocki	Narrative review	Postmenopausal women	Number of studies	Range of protocols	Variety	Concludes WBV has not been shown to provide benefit or reduce fracture risk	
2011	Lau	Systematic review and meta- analysis	Postmenopausal women	Number of studies	Range of protocols	Variety	Concludes WBV not shown to improve BMD in older women	

JOURNAL OF BONE AND MINERAL RESEARCH Volume 19, Number 3, 2004 Published online on December 22, 2003; doi: 10.1359/JBMR.0301251 © 2004 American Society for Bone and Mineral Research

Prevention of Postmenopausal Bone Loss by a Low-Magnitude, High-Frequency Mechanical Stimuli: A Clinical Trial Assessing Compliance, Efficacy, and Safety

> Clinton Rubin,¹ Robert Recker,² Diane Cullen,² John Ryaby,³ Joan McCabe,³ and Kenneth McLeod⁴

JOURNAL OF BONE AND MINERAL RESEARCH Volume 19, Number 3, 2004 Published online on December 22, 2003; doi: 10.1359/JBMR.0301245 © 2004 American Society for Bone and Mineral Research

> Effect of 6-Month Whole Body Vibration Training on Hip Density, Muscle Strength, and Postural Control in Postmenopausal Women: A Randomized Controlled Pilot Study

> > Sabine MP Verschueren,¹ Machteld Roelants,² Christophe Delecluse,² Stephan Swinnen,¹ Dirk Vanderschueren,³ and Steven Boonen⁴

Original Research

Annals of Internal Medicine

Effect of 12 Months of Whole-Body Vibration Therapy on Bone Density and Structure in Postmenopausal Women A Randomized Trial

Lubomira Slatkovska, PhD; Shabbir M.H. Alibhai, MD, MSc; Joseph Beyene, PhD; Hanxian Hu, MPH; Alice Demaras, MSc; and Angela M. Cheung, MD, PhD

Ann Intern Med. 2011;155:668-679.

Ann Intern Med. 2011;155:680-686.

Review

Annals of Internal Medicine

Whole-Body Vibration Therapy for Osteoporosis: State of the Science

Andrea Wysocki, MPP; Mary Butler, MBA, PhD; Tatyana Shamliyan, MD, MS; and Robert L. Kane, MD

Article

The effects of whole body vibration therapy on bone mineral density and leg muscle strength in older adults: a systematic review and meta-analysis

Ricky WK Lau¹, Lin-Rong Liao^{1,2}, Felix Yu¹, Tilda Teo^{1,3}, Raymond CK Chung¹ and Marco YC Pang¹

Effects of whole body vibration on bone mineral density in postmenopausal women: a systematic review and meta-analysis

Osteoporosis International

October 2016, Volume 27, Issue 10, pp 2913–2933 | Cite as

- L. C. Oliveira (1) (2) Email author (oliveiralc@uenp.edu.br)
- R. G. Oliveira (1) (2)
- D. A. A. Pires-Oliveira (1)

CLINICAL REHABILITATION

Clinical Rehabilitation 25(11) 975–988 ! The Author(s) 2011 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0269215511405078 cre.sagepub.com

Year	First author	Study type:	Particpants	Number of participants / Arms	WBV schedule: Force Frequency Program	Study length	Change in bone health	
2013	Stolzenberg	RCT	Postmenopausal women	28 / 2 WBV v Exercise	3.9 g – 10.9 g / 22 – 26 Hz/ 4 minutes x 2 / week	9 months	Statistically significant improvement in trabecular and total bone density in the lower tibia and forearm in both groups	
2013	Lai	RCT	Postmenopausal women	28 / 2 WBV v Controls	3.2g / 30 Hz / 5 minutes x 3 / week	6 months	The relative treatment benefit (increased spinal BMD) was 2.078% in favour of WBV (p=0.016)	
2014	Leung	RCT	Postmenopausal women	710 / 2 WBV v Controls	0.3g / 35 Hz / 20 minutes x 5 / week	18 months	WBV yielded beneficial effects on fall and fracture rates with a trend towards improvement in the spinal BMD	
2014	Zaki	RCT	Postmenopausal women	80 /2 WBV v Exercise	2.5 g / 16 Hz/ 20 minutes x 3 / week	8 months	WBV and resistance training associated with higher BMD and lower BMI in obese postmenopausal women	
2015	Liphardt	RCT	Women with osteopenia	42 / 2 WBV v Controls	6.0 g / 20 Hz / 10 minutes x 11 sessions / month	12 months	No difference BMD or bone architecture tibia between groups; no difference BMD spine and hip	
2016	Oliveira	Systematic review and meta- analysis	This systematic review and meta-analysis of randomized controlled trials (RCTs) identified significant effects of WBV on BMD of the lumbar spine, femoral neck, and trochanter in postmenopausal women					

Original Article

Bone strength and density via pQCT in post-menopausal osteopenic women after 9 months resistive exercise with whole body vibration or proprioceptive exercise

N. Stolzenberg¹, D.L. Belavý¹, G. Beller¹, G. Armbrecht¹, J. Semler², D. Felsenberg¹

¹Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany;
²Centre for Osteology and Metabolic Diseases, Immanuel Krankenhaus, Königstrasse 63, 14109 Berlin, Germany

Clinical Interventions in Aging

open access to scientific and medical research

open Access Full Text Article

ORIGINAL RESEARCH

Effect of 6 months of whole body vibration on lumbar spine bone density in postmenopausal women: a randomized controlled trial

Original Article | Published: 28 March 2014

Effects of 18-month low-magnitude highfrequency vibration on fall rate and fracture risks in 710 community elderly—a clusterrandomized controlled trial

K. S. Leung, C. Y. Li, Y. K. Tse, T. K. Choy, P. C. Leung, V. W. Y. Hung, S. Y. Chan, A. H. C. Leung & W. H. Cheung 🖂

Osteoporosis International 25, 1785–1795(2014) | Cite this article 1399 Accesses | 43 Citations | 4 Altmetric | Metrics Hindawi Publishing Corporation Journal of Osteoporosis Volume 2014, Article ID 702589, 6 pages http://dx.doi.org/10.1155/2014/702589

Research Article

Effects of Whole Body Vibration and Resistance Training on Bone Mineral Density and Anthropometry in Obese Postmenopausal Women

Moushira Erfan Zaki

Medical Research Division, Biological Anthropology Department, National Research Centre, El-Buhouth Street, Dokki, Giza, Egypt

Osteoporos Int DOI 10.1007/s00198-014-2995-8

ORIGINAL ARTICLE

Bone quality in osteopenic postmenopausal women is not improved after 12 months of whole-body vibration training

A. M. Liphardt · J. Schipilow · D. A. Hanley · S. K. Boyd

Summary of the Evidence

Up to 2011 limited evidence that WBV had a positive effect on BMD with equal number of studies suggesting no effect

From 2011 to 2016 increasing evidence for positive effect of WBV at least on spine BMD and also falls prevention with a lesser effect on femoral BMD

Higher magnitude WBV at high frequency appears better than low magnitude high frequency WBV

The "dose" of WBV appears to have an effect on outcomes

No studies have reported adverse effects of WBV

Q & A